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 A B S T R A C T

Crowd evacuation can undergo abrupt, hazardous shifts between ordered and disordered motion, yet how 
network topology and targeted interventions jointly shape this transition remains unclear. We integrate a 
dynamic, weighted small-world contagion layer with an extended social force model and design adaptive, 
topology-aware interventions that target high-degree (HD) and high 𝑘-shell (HK) nodes. Simulations map a risk-
induced transition: low risk permits spontaneous recovery, medium risk triggers a critical collapse of alignment, 
and high risk locks the system into disorder. Targeting a small fraction of agents (10%–20%) lowers collective 
impatience and preserves alignment, with HD retaining more benefit at higher densities. In dual-exit rooms 
under high risk — where a short random-walk disorientation rule and a pressure–emotion coupling are active 
— raising alignment via targeted control reduces evacuation time, re-balances exit usage, and lowers peak 
contact forces. These effects remain robust across exit-width changes, increases in the long-range contagion 
probability 𝑝(𝑡), and moderate inter-individual heterogeneity. Analyses of real crowd recordings further show 
that HD and HK selections overlap only partially, supporting dynamic, hybrid policies that cover both dense 
cores and structural bridges. Together, the results provide a topology-aware control framework that links 
network structure to emergent evacuation behavior, with direct implications for planning, public safety, and 
crowd resilience.
1. Introduction

Phase transitions, abrupt and collective shifts from disordered to 
ordered configurations, are ubiquitous in active matter, ranging from 
vibrated granular disks that spontaneously flock into moving bands [1] 
to bacterial swarms that organize into coherent vortices once a crit-
ical density is exceeded [2]. In animal societies, fish schools switch 
between milling and polarized states depending on group speed or 
external perturbations, while cells [3], starlings [4], locusts [5], and 
other species exhibit similar order–disorder transitions driven by lo-
cal interactions. Theoretical insights into these phenomena have been 
provided by the Vicsek model and its extensions [6,7], whose flocking 
transition and still-debated universality class support much of mod-
ern active-matter physics. Besides, human crowds are no exception: 
controlled experiments in exits and multidirectional flows reveal lane 
formation and queuing as hallmarks of an order–disorder transition, 
with disordered states significantly reducing pedestrian speeds [8]. Un-
derstanding the mechanisms that govern the analogous transition from 
chaos to order during evacuation is therefore crucial for forecasting 
critical crowd conditions and designing proactive control strategies in 
complex environments [9].
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The research of crowd dynamics has rapidly progressed in recent 
years, driven by rich sensing data and increasingly powerful simulation 
frameworks. A series of reviews make it clear that current models 
can no longer be grouped into a single paradigm but instead range 
from fluid-like continuum descriptions to psychologically grounded 
agent systems [10,11]. These models have explained certain empirical 
phenomena such as stop-and-go waves, lane formation, and arching at 
exits, but still leave important behavioral subtleties unresolved. Macro-
scopic approaches treat pedestrians as a compressible medium and 
adapt tools from traffic flow or granular physics [12]. Such models can 
reproduce large-scale congestion patterns and allow rapid optimization 
of building layouts, but they average out heterogeneity in intention 
and perception [13,14]. Microscopic models adopt the form of social 
force model: individuals follow self-driven desires, avoid obstacles, and 
exchange repulsive or attractive interactions with neighbors, which col-
lectively reproduce various phenomena of real crowds [15,16]. A recent 
variant introduced biomechanical contact rules and micro-mobility de-
vices, extending the framework to shared urban spaces [17]. A parallel 
line of work integrated leadership and demonstrated experimentally 
that a few informed agents can lead a crowd toward safer escape paths 
and shorten clearance times [18].
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Fig. 1. Two-layer schematic. The physical layer governs motion, while a time-varying contagion network carries emotional influence. Short-range proximity links 
are shown in blue; long-range shortcuts (orange) represent occasional rewiring. Blue nodes denote calm pedestrians; the red node is a panic seed establishing 
long-range contacts.
Behavior is further complicated by emotional contagion, as panic 
can spread faster than most physical cues and transform orderly flow 
into disorder in seconds. There are two principal modeling concepts: 
Thermodynamic-type models regard arousal as a diffusive field, and 
the ASCRIBE series remains influential [19,20]. In contrast, contagion-
type models instead map epidemiological state transitions into contact 
graphs using thresholds or probabilistic infection rules [21,22]. An 
empirical validation indicated that an agent-based contagion model 
calibrated on evacuation video can predict the timing and amplitude 
of collective panic peaks [23], while a recent research highlighted the 
necessity to couple contagion dynamics with realistic movements [24].

Recent years have seen increasing efforts to model evacuation under 
high-stress scenarios. Guo et al. [25] combined cellular automata with 
social force effects to simulate how panic-induced crowding and stam-
pedes amplify casualties, highlighting the lethal risks of unmanaged 
congestion. Kim and Heo [26] developed an agent-based radiological 
evacuation model that integrates hazard spread with crowd behav-
ior, emphasizing the importance of coupling human movement with 
evolving risks. Ding et al. [27] proposed a building-information-driven 
framework linking fire dynamics with crowd simulation, demonstrating 
how real-time route optimization can mitigate congestion. Other works 
have focused on strategy optimization: Yang et al. [28] optimized 
metro-station evacuation routes under potential stampedes, while Lu 
and Li [29] applied machine learning to improve fire evacuation out-
comes by influencing evacuee behavior, such as staggered exits or 
enhanced risk awareness. Together, these studies illustrate a clear 
trend toward integrating physical crowd dynamics with technological 
or operational controls.

Nonetheless, how to intervene by integrating reassurance or by 
physically guiding movers remains insufficiently quantified. From this, 
practical control strategies have started to transition from simulation to 
deployment [9]. Experiments demonstrated that a small obstacle placed 
just upstream of an exit can smooth inflow and raise outflow [30]. The 
signage based on reinforcement-learning, updating in real time, was 
found to steer evacuees around blockages and outperform static guides 
in virtual-reality tests [31]. Optimization studies further indicated that 
a few well-positioned human or robotic ‘‘evacuation assistants’’ are able 
to maximize flows [32]. Finally, a modeling study showed that rapidly 
broadcasting safety messages and muting hazard rumors suppress panic 
contagion and stabilize crowd motion [33].
2 
Yet these strategies, while effective in specific settings, often remain 
fragmented: they target either physical congestion or psychological 
contagion, but rarely both in an integrated framework. To overcome 
these limitations, we propose a unified framework that couples con-
tagion dynamics with microscopic motion and allows adaptive inter-
ventions to be evaluated systematically across scenarios. Compared 
with existing studies, our framework provides superior predictive and 
operational value, as it quantifies intervention effects across diverse 
layouts and risk regimes and directly links behavioral stabilization to 
measurable safety outcomes. To address these gaps, this work integrates 
a weighted small-world contagion field with an extended social force 
model, introduces adaptive control that selects nodes by combined 
degree and 𝑘-shell ranking, and compares these interventions in a real 
head-tracking dataset and typical layouts. The results offer quantitative 
guidelines for balancing physiological and psychological measures in 
real-time crowd management.

The rest of this paper is organized as follows. Section 2 intro-
duces the modeling framework covering the small-world interaction 
network, the emotion-contagion mechanism, and the extended social 
force dynamics augmented with queuing behavior. Section 3 reports 
a series of numerical studies: (i) natural recovery under varying risk 
levels, (ii) impact of control measures on phase transitions, and (iii) 
identification of key nodes in diverse layouts. Section 4 discusses the 
practical implications, outlines limitations, and future directions.

2. Methods

2.1. Mathematical model

2.1.1. Interaction network
Emergency evacuation involves multilayered interpersonal influ-

ences that are both spatial and emotional. To capture this complexity, 
we construct a dynamic small-world graph [34], where each node rep-
resents an individual, and the edge 𝑒𝑖𝑗 between nodes 𝑖 and 𝑗 is formed 
if either (i) the Euclidean distance 𝑑𝑖𝑗 falls below a local interaction 
radius, or (ii) they are connected through a long-range channel such 
as visual or auditory communication. The link weight 𝐶𝑖𝑗 of the edge 
decays with distance, as given by: 

𝐶 = exp
[

− 𝑑2 ∕(2𝜎2)
]

(1)
𝑖𝑗 𝑖𝑗
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where 𝜎 is a scale constant. Moreover, the long-range interaction has a 
probability 𝑝(𝑡) of being reconnected: 
𝑝(𝑡) = 𝑝0 + 𝛥𝑝𝐻

(

𝑡 − 𝑡event
)

(2)

Here, 𝑝0 is a baseline probability, and a sudden scream at 𝑡event (rep-
resented by the step function 𝐻) will raise the long-range connectivity 
by 𝛥𝑝 until the panic subsides.

At each time step 𝑡, we rebuild 𝐺𝑡 = (𝑉 ,𝐸𝑡) from the current 
positions, so that links appear and disappear as pedestrians move (as 
shown in Fig.  1). Short-range contacts use a distance threshold 𝑟prox =
1.0m and weights 𝐶𝑖𝑗 (𝑡) = exp[−𝑑𝑖𝑗 (𝑡)2∕(2𝜎2)] with 𝜎 = 1.0m, while 
long-range shortcuts created by rewiring are assigned unit weight. 
Rewiring acts on the short-range edge set and, with probability 𝑝(𝑡), 
replaces an existing endpoint by a uniformly sampled target (𝑖 ≠
𝑗), thereby generating a Watts–Strogatz–style small-world topology 
without freezing early contacts. In practice, we update the network 
every 𝛥𝑡net = 5 frames (0.20 s), which captures transient encounters 
and avoids artifacts of a static graph. In our baseline geometry, this 
construction yields an instantaneous average degree ⟨𝑘⟩ ≈ 12 and 
clustering coefficient 𝐶 ≈ 0.30, consistent with empirical proximity 
networks. During the panic window defined by 𝐻(𝑡− 𝑡event) = 1, we set 
𝑝(𝑡) such that 𝑝0 = 0.004 increases to 𝑝(𝑡) ≈ 0.20, while the probability 
reverts to 𝑝0 outside that window.

2.1.2. Impatience dynamics
Let 𝜔𝑖(𝑡) ∈ [0, 1] denote the impatience of pedestrian 𝑖, that is, 

the tendency to abandon orderly queuing. The socio-psychological 
evidence shows that 𝜔𝑖 tends to increase if surrounding neighbors 
misbehave or if the perceived local danger 𝜂𝑖 exacerbates [35]. The 
impatience is therefore updated as follows: 

𝜔𝑖(𝑡+𝛥𝑡) = 𝛽 𝜔𝑖(𝑡) + (1 − 𝛽)
[

𝛼 𝜔𝑁𝑖
(𝑡) + (1 − 𝛼) 𝑔

(

𝜂𝑖
)

]

(3)

where 𝛽 ∈ [0, 1] is a time decay factor that controls memory, 𝛼 is a 
weighted coefficient that balances social influence and environmental 
risk, and 𝑔(𝜂𝑖) =

[

1 + exp(−𝑘𝜂(𝜂𝑖 − 𝜂0))
]−1 is a sigmoid response to risk. 

Here, 𝑁𝑖 is the neighbor set of pedestrian 𝑖, and the average impatience 
of its neighbors is computed as follows: 

𝜔𝑁𝑖
(𝑡) =

∑

𝑗∈𝑁𝑖

𝜔𝑗 (𝑡)𝐶𝑖𝑗

∑

𝑗∈𝑁𝑖

𝐶𝑖𝑗
(4)

2.1.3. Pedestrian movement
The motion equation of pedestrian 𝑖 is governed by an extended 

social force model [15,16], in which the temporal variation of velocity 
𝐯𝑖(𝑡) is updated by: 

𝑚𝑖
𝑑𝐯𝑖(𝑡)
𝑑𝑡

= 𝐟 self𝑖 +
∑

𝑗≠𝑖
𝐟𝑖𝑗 +

∑

𝑊
𝐟𝑖𝑊 (5)

Here, the self-driven force combines the classical desired-velocity re-
laxation term with a queuing alignment interaction: 

𝐟 self𝑖 = 𝑚𝑖
𝑣0𝑖 (𝑡) 𝐞

0
𝑖 (𝑡) − 𝐯𝑖(𝑡)
𝜏𝑖

+ 𝐟queue𝑖 (6)

where 𝑚𝑖 is the pedestrian mass, 𝜏𝑖 is a relaxation time, and the ex-
pected direction 𝐞0𝑖  mixes an optimal direction 𝐞𝑑𝑒𝑠𝑖  toward the exit [36] 
and a direction 𝐝̂𝑖 to follow the queue [35] (see Fig.  2): 

𝐞0𝑖 (𝑡 + 𝛥𝑡) =
𝜔𝑖(𝑡) 𝐝̂𝑖(𝑡 + 𝛥𝑡) +

[

1 − 𝜔𝑖(𝑡)
]

𝐞𝑑𝑒𝑠𝑖
‖

‖

‖

𝜔𝑖(𝑡) 𝐝̂𝑖(𝑡 + 𝛥𝑡) +
[

1 − 𝜔𝑖(𝑡)
]

𝐞𝑑𝑒𝑠𝑖
‖

‖

‖

(7)

In addition, the expected speed follows the heuristic rule 𝑣0𝑖 (𝑡) =
min

(

𝑑𝑖𝑗∕𝜏𝑖, 𝑣𝑖𝑛𝑖𝑡𝑖
)

, where 𝑣𝑖𝑛𝑖𝑡𝑖  is the initial desired speed of pedestrian 
𝑖, which encourages deceleration when close to another pedestrian 
𝑗 ahead. Based on empirical findings, the queued pedestrians align 
3 
Fig. 2. Schematic of pedestrian movement. The focal pedestrian (highlighted) 
makes a trade-off between the collective flow direction of nearby neighbors 
and the direct direction toward the exit.

Table 1
Contagion and network parameters.
 Symbol Description Value  
 𝑟prox Proximity radius (short range) 1.0m  
 𝜎 Distance-decay scale 1.0m  
 𝑝0 Baseline rewiring probability 0.004  
 𝑝panic Rewiring under panic window 0.20  
 𝛥𝑡net Network rebuild cadence 0.20 s (5 frames) 
 𝛼 Social vs. risk weighting 0.5  
 𝛽 Memory/decay factor 0.8  
 𝜂 Pressure-induced increment 0.02  
 𝑓𝑐 Contact threshold for pressure coupling 40N  

Table 2
Social force, geometry, and numerical settings.
 Symbol Description Value  
 𝜇𝑣 , 𝜎𝑣 Free-speed distribution 1.30 ± 0.30m s−1  
 𝑚𝑖 Pedestrian mass 80 kg  
 𝑟𝑖 Body radius 0.15∼0.20m  
 𝜏𝑖 Relaxation time 0.5 s  
 𝐴𝑖 Social repulsion constant 5 × 102 kgm s−2  
 𝐵𝑖 Range of social repulsion 0.08m  
 𝑘 Body elasticity 1.2 × 105 kg s−2  
 𝜅 Sliding friction 2.4 × 105 kgm−1 s−1 
 𝑐 Queue-alignment gain 5 × 103 kgm−1 s−2  
 𝛥𝑡 Simulation time step 0.04 s  

laterally along a line perpendicular to the center of the exit. As a result, 
a queue-forming force is expressed as below: 

𝐟queue𝑖 = 𝑐 𝜔𝑖(𝑡)
(

𝑥𝑖 − 𝑥0
)

𝐞𝑥, (8)

where 𝑐 represents a scaling factor, 𝑥𝑖 and 𝑥0 respectively denote the 
horizontal position of pedestrian 𝑖 and the center of the exit, and 𝐞𝑥
points laterally.

The two interaction forces with other individuals and the wall are 
written as:

𝐟𝑖𝑗 =
[

𝐴𝑖 𝑒
(𝑟𝑖𝑗−𝑑𝑖𝑗 )∕𝐵𝑖 + 𝑘 𝑔(𝑟𝑖𝑗 − 𝑑𝑖𝑗 )

]

𝐧𝑖𝑗 + 𝜅 𝑔(𝑟𝑖𝑗 − 𝑑𝑖𝑗 )𝛥𝑣𝑡𝑖𝑗 𝐭𝑖𝑗 (9)

𝐟𝑖𝑊 =
[

𝐴𝑖 𝑒
(𝑟𝑖−𝑑𝑖𝑊 )∕𝐵𝑖 + 𝑘 𝑔(𝑟𝑖 − 𝑑𝑖𝑊 )

]

𝐧𝑖𝑊 − 𝜅 𝑔(𝑟𝑖 − 𝑑𝑖𝑊 ) (𝐯𝑖 ⋅𝐭𝑖𝑊 ) 𝐭𝑖𝑊
(10)

For further aspects regarding the parameters in the above equations, 
see Ref. [16].

To ensure direct comparability, as shown in Tables  1 and 2, all 
parameter values follow prior evacuation studies [15,36]. Parts of 
the background description of the social force interactions and the 
alignment metric are paraphrased and extended from our earlier report 
in Yi et al. [35]; we refer readers there for complementary experimental 
details and retain all new control-related elements herein.
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2.1.4. Pressure-induced emotion amplification
High-density crowding is a central practical challenge in evacuation 

safety, as it often gives rise to life-threatening hazards such as clogging, 
surging, and even crowd crush disasters. Understanding the mecha-
nisms by which congestion forms and amplifies is therefore essential to 
ensure that any proposed control framework can be applied in realistic 
scenarios. In this section, we highlight the key physical and psycholog-
ical processes that characterize dense-crowd phenomena and explain 
why they must be explicitly considered when designing interventions. 
In particular, when density exceeds a critical threshold, even small 
perturbations can trigger turbulent motion and arching at exits [37], 
while physical pressure and close contact can rapidly escalate into 
panic through emotional contagion. This interplay between mechanical 
forces and psychological stress explains the abrupt breakdown of order 
that is frequently observed in crowd disasters.  Extensive field obser-
vations show that strong pushing or bodily contact in dense crowds 
can precipitate a sudden surge of anxiety or panic [16,36]. Whereas 
the contagion model in Section 2.1.2 captures social routes of emotion 
propagation, it does not account for this physical trigger. We therefore 
augment the impatience dynamics with a pressure-triggered term that 
couples local contact forces to psychological stress.

Let 𝜔𝑖(𝑡)∈[0, 1] denote the impatience level of pedestrian 𝑖 at time 𝑡. 
After the contagion update 𝛥𝜔contagion

𝑖  has been computed (Eq. (3)), the 
final update is 
𝜔𝑖(𝑡 + 𝛥𝑡) = 𝜔𝑖(𝑡) + 𝛥𝜔contagion

𝑖 + 𝛥𝜔pressure
𝑖 , (11)

Here, the pressure-induced increment 𝛥𝜔pressure
𝑖 = 𝜂 1

(

𝑓 contact
𝑖 > 𝑓𝑐

)

is defined by the step function, where 1(⋅) is the indicator function 
and 𝑓 contact

𝑖 =
∑

𝑗∈𝑖
‖

‖

‖

𝑓 repulsion
𝑖𝑗

‖

‖

‖

. We use 𝐟 repulsion𝑖𝑗  to denote only the 
exponential social-repulsion term in Eq. (9), and 𝑓 contact

𝑖  is the total 
pushing force that pedestrian 𝑖 experiences from its neighbors during 
the current step.

Laboratory and simulation studies report that noticeable psycho-
logical stress is triggered when local pushing forces exceed roughly 
30–50N [16,36]. Recent density–emotion models introduce a compa-
rable threshold and an amplification parameter to reproduce panic 
surges [38]. Guided by these findings, we set the default values (see 
Table  1) to 𝑓𝑐 = 40 N and 𝜂 = 0.02, so that a single strong shove 
produces an emotion increment comparable to a typical contagion step. 
These considerations indicate that dense-crowd hazards are not merely 
theoretical, but arise from the tight coupling of physical forces and 
emotional contagion. Our framework builds on this understanding by 
explicitly introducing a pressure-triggered component into the impa-
tience dynamics, and by evaluating how topology-aware interventions 
can suppress the feedback loop between stress and congestion. This 
coupling yields a multi-scale interaction: physical forces operate in 
the lower (movement) layer, while their exceedance of the perceptual 
threshold instantly feeds into the upper (emotional) layer, enabling 
the model to reproduce abrupt breakdowns of order that occur in 
high-density crowds.

2.2. Control measures and network node analysis

Integrating positive-emotion contagion mechanisms into the crowd 
evacuation model is well motivated by psychological and coordination 
considerations. Existing studies have denoted that positive affect pre-
disposes individuals to prosocial and cooperative behaviors [39,40]. 
For example, interventions that enhance feelings of joy or gratitude 
lead people to act more friendly toward others. The positive emotions 
play a stabilizing role in agent-based evacuation models; that is, agents 
with positive emotions are more likely to synchronize and self-organize. 
Therefore, introducing explicit positive-emotion dynamics is reasonable 
and necessary because it allows agents to resist panic and propagate 
calming effects across the crowd, which ultimately assists in promoting 
order and cooperation during evacuation.
4 
Fig. 3. Illustration of 𝑘-shell decomposition. Although cyan and yellow nodes 
each have degree 𝑘 = 8, their roles differ markedly: the yellow node resides 
on the network’s periphery (𝑘𝑠 = 1), whereas the cyan node is a core hub with 
the maximum shell index (𝑘𝑠 = 3).

To identify key nodes for intervention, we adopt two widely used 
centrality measures: degree centrality and 𝑘-shell index. The degree 
centrality quantifies the number of direct connections a node has, 
and nodes with high degrees often act as local hubs that influence 
many agents. In contrast, the 𝑘-shell (or 𝑘-core) decomposition [41] 
partitions the network into nested shells by iteratively removing nodes 
with degree less than 𝑘 to reveal the hierarchical structure [42]. The 
𝑘-shell index of a node indicates the deepest shell it belongs to. While 
high degree nodes exert strong local influence, high 𝑘-shell nodes are 
structurally embedded in the network core and tend to have more 
widespread impact. A schematic in Fig.  3 illustrates this distinction: 
two nodes may share the same degrees but differ significantly in their 
𝑘-shell values, reflecting their different roles in network connectivity.

We consider two types of intervention mechanisms targeted at key 
nodes. The first is positive-emotion injection, aiming to directly reduce 
the emotional arousal of selected pedestrians. Let the impatience 𝜔𝑖(𝑡)
of pedestrian 𝑖 represent its emotional state, which can be updated 
under this intervention as follows: 
𝜔𝑖(𝑡 + 𝛥𝑡) = 𝜔𝑖(𝑡) − 𝛾 ⋅ 𝟏[𝑡0 ,𝑡0+𝑇 ](𝑡) (12)

Here, 𝛾 is the intervention intensity, and 𝟏[𝑡0 ,𝑡0+𝑇 ] is the indicator 
function for the intervention period, where 𝑡0 and 𝑇  are initial time 
and duration, respectively. This models real-world calming strategies, 
such as targeted audio or visual messages.

The intervention proceeds in the following order: (i) apply the emo-
tion pulse by the update above, (ii) compute the neighborhood term 
using a masked emission, and (iii) perform the contagion update for all 
agents using the standard rule with 𝜔𝑁𝑖

(𝑡) (and 𝛼, 𝛽 as specified else-
where). In other words, controlled agents receive a positive-emotion 
pulse that lowers their own 𝜔𝑖 and emit no panic to neighbors during 
the intervention window, thus they still receive social influence from 
others. 

The second mechanism is directional guidance, which represents a 
tendency to steer individuals toward queuing behavior or coordinated 
motion. Let 𝒈𝑖 denote the guiding direction (e.g., along a queue), then 
a guiding force is defined as: 
𝒇 guide𝑖 = 𝜆 ⋅ 𝒈𝑖 (13)

where 𝜆 is the strength of the guidance, whose value can be made 
adaptive, increasing in response to local density or crowd conditions. 
This force encourages alignment with the desired flow, which enhances 
orderliness and mitigates lateral conflicts. Overall, these mechanisms 
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Fig. 4. Typical snapshots of crowd evacuation under the three risk levels. The solid black lines indicate the building geometry, the green strip marks the exit, 
and the light blue area denotes the initial pedestrian distribution. Each circle represents a pedestrian, whose color encodes the emotional state, with blue and 
red indicating calm and panic states, respectively.
provide interpretable and adjustable control strategies that influence 
both the physiological and psychological aspects of pedestrian behav-
ior, thereby making it possible to study order formation under targeted 
interventions.

3. Numerical experiments

3.1. Natural recovery from disorder

The coupling between the emotion-propagation network and the 
extended social force model has been quantitatively validated in our 
previous research  [43]. Therefore, we omit further calibration in 
this work and focus directly on intervention strategy exploration. We 
simulate the post-shock recovery dynamics of pedestrian crowds under 
the three risk levels (i.e., low, medium, and high), which are distin-
guished by modest changes in environmental cues (e.g., noise level, 
visual danger signals). These risk settings, primarily used to modulate 
the initial emotional states of individuals, are briefly described here 
because our interest lies in the dynamical characteristics after the panic 
event. In each scenario, we model a crowd of 𝑁 = 25 pedestrians as 
an initial size, and subsequent sections repeat the analysis for larger 
𝑁 to assess robustness. At time frame 80, a sudden shouting event 
is introduced to represent an abrupt panic trigger. The long-range 
interaction probability in the emotional contagion network is increased 
to 𝑝(𝑡) = 0.2 (from its lower baseline value) to simulate the spread 
of intensified panic. After time frame 100, this probability 𝑝(𝑡) reverts 
5 
Fig. 5. Temporal evolutions of alignment under the three risk levels. The solid 
curves display the smoothed trajectories derived from the raw time-series data.

to its baseline value 𝑝0 = 0.004. The emotional contagion mechanism 
follows recent models in which adding emotional interactions enhances 
behavioral realism in stressful situations.
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Fig. 6. Temporal evolutions of impatience and alignment under different intervention strategies. (a)–(b) Targeting random nodes. (c)–(d) Targeting high degree 
nodes. (e)–(f) Targeting high 𝑘–shell nodes.
We quantify collective order using an alignment metric 𝐴(𝑡), which 
is defined as the mean cosine similarity of all pairwise pedestrian 
velocity directions: 

𝐴(𝑡) = 2
𝑁(𝑁 − 1)

∑

𝑖<𝑗
𝐯̂𝑖(𝑡) ⋅ 𝐯̂𝑗 (𝑡), (14)

where 𝐯̂𝑖(𝑡) = 𝐯𝑖(𝑡)∕|𝐯𝑖(𝑡)| is the unit velocity vector of pedestrian 𝑖. 
Here, 𝐴(𝑡) = 1 reflects perfect alignment, while 𝐴(𝑡) = 0 corresponds 
to complete directional randomness. We record 𝐴(𝑡) and the emotional 
state of each agent throughout each run. Fig.  4 shows typical snapshots 
of crowd evacuation under the three risk levels (agents colored by 
6 
emotional state), and the temporal evolutions of alignment for these 
cases are presented in Fig.  5.

Under the low risk condition, the crowd rapidly rebuilds order after 
the disruption. In these runs, 𝐴(𝑡) experiences only a brief drop at the 
shock and then quickly returns to near its pre-shock value. For example, 
Fig.  4 displays that the agents have largely realigned into a coherent 
flow by time frame 100, and Fig.  5 confirms that 𝐴(𝑡) rebounds to 
near unity. By contrast, the medium risk scenario exhibits near-critical 
behavior in which the shock induces a sudden collapse in alignment. 
As shown in Fig.  5, 𝐴(𝑡) decreases sharply after the disturbance and 
remains low for the rest of the simulation, indicating a rapid transition 
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Fig. 7. Quantitative comparison of control effectiveness under different intervention strategies. (a) A crowd of 𝑁 = 25 pedestrians. (b) A crowd of 𝑁 = 45
pedestrians.
Fig. 8. Quantitative comparison of evacuation indicators. (a) Impatience and alignment under directional and emotional managements. (b) Alignment under 
varying impatience after emotional management.
from ordered motion to a disordered panic state. This abrupt loss of 
coherence is analogous to a discontinuous (first-order) phase transition 
from order to disorder, as reported in collective motion models. That 
is, in the medium-risk case, the crowd crosses a critical threshold at 
the moment of shock, beyond which disorder does not naturally return 
to order even after the perturbation is removed. Finally, the system 
remains disordered throughout the high-risk simulation. The alignment 
𝐴(𝑡) even falls close to zero after the shock (Fig.  5) and agents persist 
in a chaotic configuration (Fig.  4), which suggests that a high baseline 
threat can prevent spontaneous recovery. In summary, we find that 
low risk allows natural recovery of collective order after a panic event, 
but medium risk places the system at a critical point with a phase 
transition-like collapse, and high risk results in persistent disorder.

3.2. Impact of control measures on phase transitions

3.2.1. Coverage and strategy comparison
In this section, we investigate how external control measures re-

shape this transition. We consider three intervention strategies for 
selecting a fraction 𝛿 of specific nodes: (i) targeting random nodes, (ii) 
targeting high degree nodes, and (iii) targeting high 𝑘–shell nodes. Fig. 
6 presents the temporal evolutions of impatience and alignment under 
different intervention strategies. For the case of random-based strategy, 
as shown in Fig.  6(a)–(b), the post-shock time series of impatience 
decreases monotonically as 𝛿 increases, and the rebound becomes 
delayed. The divergence in alignment trajectories emerges almost after 
7 
Fig. 9. Low-coverage effectiveness. Mean±SEM (𝑛 = 30) for impatience and 
alignment at 𝛿 ∈ {0, 0.05, 0.10}. 𝛿 = 0.10 reduces impatience and increases 
alignment; 𝛿 = 0.05 is not significant (NA) vs. baseline.

time frame 75, and the following decay rate of alignment falls from 
approximately 3 × 10−3 frame−1 at 𝛿 = 0 to 1 × 10−3 frame−1 at 𝛿 =
0.35. Notably, these curves almost overlap once 𝛿 ≥ 0.25, indicating 
it reaches saturation beyond roughly one-fourth coverage. In contrast, 
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Fig. 10. Dual-exit performance under risk. (a) Evacuation time 𝑇  (s) versus control ratio 𝛿 for middle vs. high risk. With random-walk disorientation and pressure–
emotion coupling active, 𝑇  decreases with 𝛿 at high risk, while changes at middle risk are small. (b) Exit preference 𝑅1 (0.5 indicates balanced use of the two 
exits) versus 𝛿; increasing 𝛿 drives 𝑅1→0.5 at high risk (significance marks above bars; ns = not significant). Bars show mean±SEM (𝑛 = 30; multiple-comparison 
corrected).
Fig. 11. Exit-width sweep. (a) Evacuation time 𝑇  (s) versus control ratio 𝛿 for narrow/medium/large doors. At saturated narrow doors, 𝑇  changes little (capacity-
limited), whereas wider doors show modest decreases as 𝛿 increases. (b) Peak out-flow (persons/s) versus 𝛿; control slightly reduces peakiness at narrow doors 
and maintains high outflow at wider doors. Bars show mean±SEM (𝑛 = 30).
degree-based and 𝑘-shell-based strategies produce significantly stronger 
effects in Fig.  6(c)–(f). For instance, at time frame 200, the mean 
impatience is roughly 16% lower and the mean alignment about 12% 
higher than those achieved by the random-based strategy at the same 
𝛿. Although the absolute performance of these two strategies is compa-
rable, the 𝑘-shell-based strategy exhibits a lower run-to-run fluctuation, 
suggesting that it has slightly greater robustness.

Previous theoretical and empirical studies have reported that influ-
encing 10%–20% of nodes is sufficient to change the behavior of global 
networks [44]. From this, we focus on the case of 𝛿 = 0.2 (saturation 
after 𝛿 = 0.25) and compare the control effectiveness under different 
intervention strategies. At a relatively low density (𝑁 = 25), as shown 
in Fig.  7(a), both targeted strategies significantly outperform random-
based strategy (𝑝-value < 0.01), and the pairwise Mann–Whitney tests 
show that the median gains are 𝛥𝐴 ≈ 0.05 for degree-based and 
𝛥𝐴 ≈ 0.04 for 𝑘-shell-based strategies, while the difference between 
them is not statistically significant. As density increases (𝑁 = 45), 
Fig.  7(b) illustrates that degree-based strategy retains roughly 70% of 
its original benefit, whereas the effectiveness of 𝑘-shell-based strategy 
declines to about 40%. This reveals that the degree-based strategy is 
more beneficial for scaling with density, even though 𝑘-shell nodes may 
remain attractive in situations requiring rapid and cohesive influence. 
It should be noted that a clear inflection point at 𝛿 ∈ [0.15, 0.2] can be 
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found by integrating the alignment curves over time, where additional 
coverage beyond this range yields an increment of less than 5%.

Further, the quantitative comparison of evacuation indicators is 
presented in Fig.  8. For the same targeted nodes, Fig.  8(a) reveals 
emotional management shows better control effects than directional 
management in terms of both impatience and alignment. Fig.  8(b) 
shows the alignment under varying impatience after emotional manage-
ment: all control levels perform similarly if 𝜔 ≤ 0.2, but the alignment 
collapses toward the non-control level if 𝜔 ≥ 0.25. Thus, we can 
reduce impatience to below this threshold using effective management, 
with emotional guidance achieving this more efficiently. Overall, our 
simulations show that applying positive-emotion pulses to about 20% of 
strategically chosen pedestrians (preferably high degree or high 𝑘-shell 
nodes at lower densities) can suppress the order–disorder phase transi-
tion, reduce impatience peaks, and preserve high directional coherence. 
This offers a practical guideline for crowd management protocols in 
emergency situations.

3.2.2. Low-coverage effectiveness
A practical question is whether small but realistic coverage remains 

beneficial. Fig.  9 shows that even 𝛿 = 0.10 produces statistically 
significant improvements over the baseline (𝑝 < 0.05), whereas 𝛿 =
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Fig. 12. Individual heterogeneity. Time series of impatience (a,b) and alignment (c,d) under increasing heterogeneity in the social–risk weighting (𝐻𝛼 , left 
column) and the memory/decay factor (𝐻𝛽 , right column). Solid lines show the mean with shaded SEM (𝑛 = 30).
0.05 is generally indistinguishable from no control (𝑝 > 0.10). Gains 
grow sublinearly with 𝛿, suggesting 10–15% as a feasible target range 
via hybrid deployments (mobile stewards plus targeted signage), while 
20% can be viewed as an upper-bound stress test.

3.2.3. Dual-exit performance under high risk
Dual-exit layouts introduce additional coordination demands be-

cause misperception can amplify exit imbalance. In this setting, we 
activate two mechanisms as follows. (i) Random-walk disorientation 
rule: when impatience exceeds a threshold, temporarily replaces the 
desired direction with a random unit vector for a short random du-
ration. (ii) Pressure–emotion coupling: excessive local contact force 
raises impatience via a thresholded increment. With these mecha-
nisms, topology-aware control that raises alignment (HD or HK at 𝛿 ∈
[0.15, 0.20]) shortens the total evacuation time 𝑇  by ≈ 12%, reduces the 
exit-preference bias 𝑅1 by ≈ 23% toward balanced usage, and lowers 
the peak contact force (all 𝑝 < 0.01, 𝑛 = 30, BH–FDR). The improvement 
arises because influential nodes recover from disorientation earlier and 
dampen rumor-like spread of erratic headings, curtailing the positive 
feedback between confusion and compression. The effects on 𝑇  are 
small at medium risk, consistent with already stable dynamics (Fig.  10).

3.2.4. Robustness to parameter heterogeneity
We next assess robustness of the intervention effects across three di-

mensions: (i) geometry via exit-width variation, (ii) social reach via the 
long-range contagion probability 𝑝(𝑡), and (iii) individual variability via 
moderate parameter heterogeneity. Throughout we keep the statistical 
protocol unchanged (mean±SEM, 𝑛 = 30, BH–FDR).
9 
Exit-width sweep (geometry). Across narrow, medium, and wide single-
exit layouts (Fig.  11), both HD and HK consistently reduce impatience 
peaks and raise alignment relative to random or no control. Opera-
tionally, at a saturated narrow door the total evacuation time 𝑇  is 
capacity-limited and thus shows at most marginal reductions (or a 
negligible increase consistent with a stability–outflow trade-off), yet 
peak contact force is lowered and 1 s peak outflow is smoothed. As the 
door widens and the bottleneck constraint relaxes, modest decreases 
in 𝑇  emerge while the safety-related gains (lower peak force, higher 
alignment) persist. These patterns indicate that topology-aware con-
trol mainly improves stability and safety under strict capacity, and 
additionally shortens 𝑇  when geometry ceases to be the dominant 
limiter.

Long-range contagion sweep (social reach). We varied the baseline long-
range probability 𝑝0 from 0 to 0.006 at medium density while holding 
the panic-window amplitude fixed. In all cases, targeted control (HD 
and HK) delayed the alignment collapse and reduced residual impa-
tience relative to no control. Comparing HD with HK, the alignment 
advantage of HD was consistently but only slightly larger across the 
tested 𝑝0 values, and the differences did not reach statistical signifi-
cance under nonparametric tests. Thus, within this 𝑝0 range, the two 
strategies can be regarded as broadly comparable, with a mild practical 
edge for HD as social reach strengthens. The coverage–benefit ‘‘elbow’’ 
remains near 𝛿 ∈ [0.15, 0.20], beyond which returns diminish.

Individual heterogeneity (parameters). Free speeds are sampled from 
 (1.30, 0.302)m/s, and per-agent (𝛼𝑖, 𝛽𝑖) are drawn as bounded per-
turbations around global means to induce moderate heterogeneity. 
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Fig. 13. Sensitivity to pressure–emotion coupling. Impatience (a,b) and alignment (c,d) under sweeps of amplification 𝜂 (left) and threshold 𝑓𝑐 (right). Larger 𝜂
and lower 𝑓𝑐 intensify and prolong pressure-triggered impatience and erode alignment; the baseline (𝑓𝑐 = 40N, 𝜂 = 0.02) is mid-range.
Sensitivity sweeps show that increasing heterogeneity broadens dis-
persion and slightly delays recovery. However, the qualitative rank-
ing between HD and HK — and their gains at 𝛿 ∈ {0.10, 0.20} — 
remains unchanged (Fig.  12). Together with the geometry and 𝑝(𝑡)
sweeps, these results indicate that the principal conclusions are robust: 
topology-aware control reliably stabilizes dynamics across layouts and 
social-reach regimes, improves safety metrics under tight capacity, and 
preserves its comparative ordering under reasonable inter-individual 
variability.

3.2.5. High-density validation
In a dense regime (e.g., 𝑁 = 70 in an area of 13.4m2, den-

sity 5.2 ped/m2), contacts are transient and force chains frequent. We 
therefore enable the pressure–emotion coupling and examine (i) the 
sensitivity to collision-induced parameters and (ii) the effectiveness of 
control strategies under high density.
Sensitivity to pressure–emotion coupling. Varying amplifications 𝜂 and 
contact thresholds 𝑓𝑐 show consistent monotone trends: larger 𝜂 pro-
duces higher and more persistent impatience and a faster loss of 
alignment, whereas lower 𝑓𝑐 (easier triggering) yields more frequent 
pressure-induced increments with similar consequences. The baseline 
(𝑓𝑐 = 40N, 𝜂 = 0.02) lies mid-range and is used in the main experiments 
(Fig.  13).
Effectiveness of strategies at high density. With the coupling active, peri-
odically retargeted high-degree (HD) targeting lowers mean impatience 
and increases alignment (AUC) relative to no control, 𝑘-shell (HK) 
exhibits the same direction with smaller gains. Both targeted schemes 
reduce peak contact forces compared to random selection, while the 
10 
total evacuation time 𝑇  changes little or can be slightly longer at 
saturated doors, which reflects a stability–outflow trade-off typical of 
capacity-limited bottlenecks (Fig.  14).

3.3. Identification of key nodes in the real world

This section is concerned with identifying key nodes in the real 
world. We first analyze high-resolution crowd recordings to determine 
influential individuals. Based on public head-detection datasets [45], 
the time-resolved interaction networks are constructed, where pedes-
trians are treated as nodes and proximity-based links are represented 
as network edges. Over sliding time windows, we extract the sets of 
the top 20% of high degree (THD) and high 𝑘-shell (THK) nodes at 
each time frame to assess where such structurally ‘‘influential’’ agents 
actually occur and how stable these selections remain over time.

Fig.  15 shows the spatial distribution of key nodes during evacu-
ation experiments, in which the locations of THD nodes in the early 
and late stages are mapped in Fig.  15(a)–(b), while the corresponding 
THK nodes are presented in Fig.  15(c)–(d). It is found that the two 
sets occupy different regions: THD nodes tend to cluster in the dense 
core (e.g., bottlenecks or exits) of the crowd, whereas THK nodes 
are often located at the periphery. This implies that degree centrality 
highlights locally well-connected individuals, while 𝑘-shell centrality 
captures those deeply embedded in the global contact structure. That 
is, some agents have many direct contacts but may not lie on the most 
central network paths, and vice versa.

The temporal evolutions of key-node metrics (i.e., maximum node 
degree and maximum 𝑘-shell index) are shown in Fig.  16. Both curves 
rise sharply during the initial rush toward the exit, and then decline 
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Fig. 14. Strategy effectiveness at high density. (a) Evacuation time 𝑇  (s), (b) mean impatience, (c) peak contact force 𝐹peak (N), and (d) alignment area-under-curve 
(AlignAUC) for HD, HK, and random control. HD achieves lower impatience and higher AlignAUC than random; HK shows similar but smaller improvements. 
Both targeted schemes reduce 𝐹peak relative to random, while 𝑇  changes little or may be slightly longer at saturated doors (mean±SEM, 𝑛 = 30).
as the evacuation progresses. This dynamic trend confirms that the 
identification and importance of key nodes change over time, because 
a static choice of key nodes will quickly become outdated, which 
aligns with studies on dynamic networks that emphasize the need to 
re-evaluate node importance as conditions evolve.

To quantify how different the two criteria are in practice, we com-
puted the Jaccard overlap 𝐽 (𝛿) between the top-𝛿 THD and THK sets 
on sliding windows across 40 real sequences. Across 40 real sequences, 
the Jaccard overlap 𝐽 (𝛿) between the top-𝛿 THD and THK sets increases 
with coverage but remains partial: 𝐽 (0.10) ≈ 0.17, 𝐽 (0.15) ≈ 0.26, and 
𝐽 (0.20) ≈ 0.32 (SEM ∼ 0.03–0.05). In practice, this supports hybrid 
policies (e.g., THD ∪ THK) with short retargeting windows to maintain 
coverage of both dense cores and structural bridges as the contact graph 
evolves.

To better visualize global spatial patterns, Fig.  17 shows spatial 
distributions of key-node locations during evacuation experiments, with 
red regions denoting areas where key nodes appear most frequently. 
The red area in Fig.  17(a) confirms that THD nodes cluster in the 
core region of the crowd, whereas Fig.  17(b) reveals that THK nodes 
are distributed along the outer shell. In practice, this suggests that 
intervention strategies should consider not only the highest density 
areas but also the network ‘‘bridges’’ at the edges of dense crowds. 
To further isolate the effect of spatial geometry on key-node locations, 
we conduct simulations in four typical architecture layouts: a circular 
plaza, a T-shaped intersection, a region with internal obstacles, and a 
semicircular gathering space. As shown in Fig.  18, the contact networks 
are constructed, and both THD and THK nodes can be identified. In 
addition, we define a high-density zone 𝜌 as the subset of the region 
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Table 3
Statistical analysis for different architecture layouts.
 Layout ⟨𝑑⟩ ⟨𝑘𝑠⟩ 𝐽 (THD,THK) 𝐽 (𝜌,THD) 𝐽 (𝜌,THK) 𝐽 (𝜌 ∪ Seed,THK) 
 Circle 2.41 1.65 0.610 0.359 0.364 0.449  
 T-cross 2.41 1.65 0.614 0.366 0.371 0.453  
 Obstacles 3.68 2.40 0.561 0.366 0.375 0.462  
 Semicircle 2.41 1.65 0.615 0.362 0.371 0.450  

containing the top 20% of local density [36]. These architecture layouts 
are compared in Table  3 using the following statistics: (i) average 
degree ⟨𝑑⟩ of the chosen nodes, (ii) average 𝑘-shell ⟨𝑘𝑠⟩ of the chosen 
nodes, and (iii) Jaccard similarity index 𝐽 (𝐴,𝐵) = |𝐴 ∩ 𝐵|∕|𝐴 ∪ 𝐵|
between sets 𝐴 and 𝐵. In open layouts (circle, T-shape, semicircle), 
⟨𝑑⟩ ≈ 2.41 and ⟨𝑘𝑠⟩ ≈ 1.65 reflect relatively sparse connections, while 
in the scenario with obstacles, ⟨𝑑⟩ ≈ 3.68 and ⟨𝑘𝑠⟩ ≈ 2.40 exhibit 
higher connectivity due to the formation of narrow passages. The 
overlap between degree-based and 𝑘–shell–based sets is partial since 
𝐽 (THD,THK) ≈ 0.61 in open layouts and 𝐽 (THD,THK) ≈ 0.56 in the 
obstacle case. Importantly, the overlap between high-density regions 
and structural key nodes is much lower, with only about one-third 
(𝐽 (𝜌,THD) ≈ 0.36 and 𝐽 (𝜌,THK) ≈ 0.38) of central nodes falling within 
the top 20% density zone. Even after including the locations of sudden 
seed events (i.e., long-range panic sources), the overlap with THD or 
THK nodes only rises to about 0.45.

In summary, our simulations demonstrate that neither local density 
nor static network topology is sufficient to identify all key nodes. 
Although high-density areas contain many important individuals, a 
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Fig. 15. Locations of key nodes during evacuation experiments. (a)–(b) Locations of THD nodes in the early and late stages. (c)–(d) Locations of THK nodes in 
the early and late stages.
Fig. 16. Temporal evolutions of key-node metrics during evacuation experiments. (a) Maximum node degree as a function of time frame. (b) Maximum 𝑘-shell 
index as a function of time frame.
substantial portion of key nodes may reside outside these zones. Con-
versely, purely structural metrics (e.g., degree or 𝑘-shell) can capture 
network-bridging individuals but may neglect the context of local 
crowding. To address this limitation, we propose a hybrid, adaptive 
approach. First, the set of control nodes should be dynamically updated 
as the situation evolves, for example, by recomputing the centrality 
rankings at regular intervals to account for new arrivals or depar-
tures. Second, structural and density-based criteria should be jointly 
considered when selecting control points. One possible strategy is to 
prioritize nodes that score highly on a weighted index of degree (or 𝑘-
shell) and local density. Another is to ensure that control nodes cover 
both dense cores and critical bridges, for instance, including some high 
12 
degree nodes from the densest zones and some high 𝑘-shell nodes near 
the periphery. As a result, an integrated strategy that updates control 
positions in real time and leverages both network topology and spatial 
density is expected to improve the robustness of crowd management 
and disturbance mitigation.

4. Conclusions

In this work, we demonstrate that proactive, network-targeted in-
terventions can transform chaotic crowd evacuations back into orderly 
flow. Our dynamic-network simulations reveal that even a single per-
turbative event can trigger a sudden order–disorder phase transition, 
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Fig. 17. Spatial distributions of key nodes during evacuation experiments. (a) Heatmaps of THD nodes. (b) Heatmaps of THK nodes.
Fig. 18. Spatial distributions of key nodes across four typical architecture layouts. Columns (from left to right) correspond to the circular plaza (a*), T-shaped 
intersection (b*), obstacle room (c*), and semicircular hall (d*). Rows (from upper to bottom) distinguish THD nodes (a1–d1), THK nodes (a2–d2), and seed 
nodes (a3–d3).
yet directing a small subset of well-chosen individuals can effectively 
suppress this panic. Compared to random or density-based interven-
tions, both high-degree and 𝑘-shell targeting significantly enhance 
evacuation performance by restoring alignment more quickly, reducing 
behavioral agitation, and requiring fewer controlled agents. In particu-
lar, high-degree targeting remains effective at higher crowd densities, 
whereas purely density-based control tends to overlook the majority of 
truly influential nodes.

These insights have important practical implications. First, evacu-
ation planning should account for network topology — for example, 
placing security personnel or autonomous agents at hubs (e.g., fo-
cal gathering points or chokepoints) rather than solely at peaks of 
local density — and complementing physical guidance with positive-
emotion cues (calming signals, trained pacers, informative messaging). 
13 
At the same time, real-time implementation faces sensing and la-
tency constraints: estimating a live proximity network (wearables or 
vision) and refreshing centrality ranks introduce delays that can ap-
proach contagion time scales, thereby eroding the benefit of targeted 
control. In addition, our model does not include injury mechanics, 
fallen obstacles, or structural yielding [25,28], outflow and bottleneck 
effects emerge from social force interactions and geometry, but crush-
dominated regimes are not represented, so clearance times may be 
optimistic under extreme crowd pressure.

In conclusion, our findings underscore a shift from reactive re-
sponses to anticipatory, topology-aware control. By quantifying how 
network-targeted interventions reshape transition dynamics, we pro-
vide a framework for planners and engineers to design smarter build-
ings and protocols. Future work will (i) integrate and benchmark 
low-latency sensing–analytics–actuation loops and quantify robustness 
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to latency and measurement noise, (ii) expand heterogeneity and 
multimodality (e.g., individual variability [46,47], mixed mobility 
modes [48]), and (iii) extend validation to larger scales and more 
complex geometries; incorporating obstruction and injury processes is 
also a priority to close the gap to crush-dominated scenarios.
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